String Kernels with Feature Selection for SVM Protein Classification

نویسندگان

  • Wen-Yun Yang
  • Bao-Liang Lu
چکیده

We introduce a general framework for string kernels. This framework can produce various types of kernels, including a number of existing kernels, to be used with support vector machines (SVMs). In this framework, we can select the informative subsequences to reduce the dimensionality of the feature space. We can model the mutations in biological sequences. Finally, we combine contributions of subsequences in a weighted fashion to get the target kernel. In practical computation, we develop a novel tree structure, coupled with a traversal algorithm to speed up the computation. The experimental results on a benchmark SCOP data set show that the kernels produced by our framework outperform the existing spectrum kernels, in both efficiency and ROC50 scores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Kernel Methods for SVM Sequence Classifiers

In this work we study string kernel methods for sequence analysis and focus on the problem of species-level identification based on short DNA fragments known as barcodes. We introduce efficient sorting-based algorithms for exact string k-mer kernels and then describe a divide-and-conquer technique for kernels with mismatches. Our algorithm for the mismatch kernel matrix computation improves cur...

متن کامل

Large Scale Multiple Kernel Learning

While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by ...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

H-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data

Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008